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Life history theory argues that exposure to early life adversity (ELA) accelerates development, although
existing evidence for this varies. We present a meta-analysis and systematic review testing the hypothesis
that ELA involving threat (e.g., violence exposure) will be associated with accelerated biological aging
across multiple metrics, whereas exposure to deprivation (e.g., neglect, institutional rearing) and
low-socioeconomic status (SES) will not. We meta-analyze 54 studies (n = 116,010) examining
associations of ELA with pubertal timing and cellular aging (telomere length and DNA methylation age),
systematically review 25 studies (n = 3,253) examining ELA and neural markers of accelerated
development (cortical thickness and amygdala-prefrontal cortex functional connectivity) and evaluate
whether associations of ELA with biological aging vary according to the nature of adversity experienced.
ELA overall was associated with accelerated pubertal timing (d = —0.10) and cellular aging
(d = —0.21), but these associations varied by adversity type. Moderator analysis revealed that ELA
characterized by threat was associated with accelerated pubertal development (d = —0.26) and accel-
erated cellular aging (d = —0.43), but deprivation and SES were unrelated to accelerated development.
Systematic review revealed associations between ELA and accelerated cortical thinning, with threat-
related ELA consistently associated with thinning in ventromedial prefrontal cortex, and deprivation and
SES associated with thinning in frontoparietal, default, and visual networks. There was no consistent
association of ELA with amygdala-PFC connectivity. These findings suggest specificity in the types of
early environmental experiences associated with accelerated biological aging and highlight the impor-
tance of evaluating how accelerated aging contributes to health disparities and whether this process can
be mitigated through early intervention.

Public Significance Statement

This meta-analysis and systematic review suggests that biological aging following early life adver-
sity, including earlier pubertal timing, advanced cellular aging, and accelerated thinning of the cortex,
may be specific to children and adolescents who experienced violent or traumatic experiences early
in childhood. No such effect was found for children who experienced deprivation or poverty in the
absence of violence or trauma. These findings highlight a potential role of accelerated biological
aging in health disparities associated with early life trauma, and a potential target for early
interventions.
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Exposure to early life adversity (ELA)—including exposure to
child abuse, sexual assault, neglect, and chronic poverty—is asso-
ciated with elevated risk for numerous mental and physical health
problems, including depression, anxiety disorders, substance
abuse, suicide, and cardiovascular disease (Felitti et al., 1998;
Green et al., 2010; Heim & Binder, 2012; Kessler et al., 2010;
McLaughlin et al., 2010; McLaughlin, Green, et al., 2012; Norman
et al., 2012; Scott et al., 2011). The associations of ELA with
mental and physical health problems are observable beginning in
childhood and adolescence (Boynton-Jarrett, Ryan, Berkman, &
Wright, 2008; Halpern et al., 2013; McLaughlin, Basu, et al., 2016;
McLaughlin, Green, et al., 2012) and persist into adulthood (Dong
et al., 2004; Felitti et al., 1998; Green et al., 2010; Kessler et al.,
2010). Recent evidence from longitudinal and population-based
studies indicates that exposure to ELA is also associated with
elevated risk for premature mortality (Brown et al., 2009; Chen,
Turiano, Mroczek, & Miller, 2016).

Accelerated Development/Biological Aging

One potential mechanism linking exposure to ELA with this
wide range of physical and mental health problems is accelerated
biological aging. Specifically, exposure to adversity early in life
may alter the pace of development, resulting in faster aging. Most
conceptual models on the link between ELA and accelerated
development are based in life history theory (J. Belsky, Steinberg,
& Draper, 1991; Ellis, Figueredo, Brumbach, & Schlomer, 2009;
Ellis & Garber, 2000) and postulate that experiences in early life
can program an individual’s developmental trajectory in order to
respond most effectively to the environmental demands they are
likely to encounter later in life. The pattern and timing of life
history events—such as age of sexual maturation, gestational pe-
riod, number of offspring, birth spacing, length of parental invest-
ment, longevity, and others—is determined by the relative priori-
tization of time and energy invested in growth, reproduction, and
survival (Del Giudice, Gangestad, & Kaplan, 2016; Hill & Kaplan,
1999). For instance, in a safe, predictable and enriched environ-
ment, a slow and protracted development may be optimal, as it
allows for maximal parental investment prior to offspring inde-
pendence. However, in a harsh or unpredictable environment, a
faster pace of development in which individuals reach adult-like
capabilities at an earlier age may be favored in order to maximize
reproduction prior to potential mortality. Life history theories of
human development argue that early environments characterized
by harshness (e.g., trauma, violence exposure) may accelerate the
onset of puberty in order to maximize the opportunity for repro-
duction prior to mortality (J. Belsky, 2012; Ellis et al., 2009;
Rickard, Frankenhuis, & Nettle, 2014). However, in unpredictable
environments, where there is large variation in harshness, it may
be optimal to delay reproductive milestones, depending upon var-
ious features of the environment including population density and
resource availability. For instance, according to some models,
increased unpredictability in juvenile mortality tends to delay
development, whereas increased unpredictability in adult mortality
tends to accelerate development (J. Belsky, 2012; Ellis et al.,
2009).

More recently, life history theories regarding the pace of devel-
opment following ELA have been extended to focus on additional

measures of biological aging. First, predictive adaptive response
models (Nettle, Frankenhuis, & Rickard, 2013; Rickard et al.,
2014) focus on cellular and molecular development and how it
relates to an individual’s morbidity and mortality across the life
span. These models propose that ELA negatively influences phys-
ical health, through altered cellular development as a result of
reduced energy to build or repair cellular tissue. This advanced
cellular aging forecast may reduce longevity and contribute to
acceleration in reproductive maturity (Nettle et al., 2013; Rickard
et al., 2014). Second, the stress acceleration hypothesis (Callaghan
& Tottenham, 2016) suggests that ELA accelerates the develop-
ment of neural networks underlying emotional processing, specif-
ically, the amygdala-prefrontal cortex (PFC) circuit thought to
underlie emotion regulation capabilities. This accelerated devel-
opment in the context of unreliable or absent caregiving may occur
in order to allow for independent emotion regulation at an earlier
age (Callaghan & Tottenham, 2016). Each of these theories rest on
the assumption that ELA impacts the pace of development across
multiple domains and metrics of biological aging (pubertal timing,
cellular aging, and neural development).

ELA and Biological Aging

Biological aging following ELA has been measured with a
variety of different metrics. By far the most commonly used metric
is the timing and pace of pubertal development, including age of
menarche in females (Boynton-Jarrett & Harville, 2012; Dear-
dorff, Abrams, Ekwaru, & Rehkopf, 2014; Graber, Brooks-Gunn,
& Warren, 1995) and pubertal stage controlling for chronological
age (Colich et al., 2020; Mendle, Leve, Van Ryzin, Natsuaki, &
Ge, 2011; Negriff, Blankson, & Trickett, 2015; Noll et al., 2017;
Sumner, Colich, Uddin, Armstrong, & McLaughlin, 2019). A
second line of work has examined measures of cellular aging,
including leukocyte telomere length (Coimbra, Carvalho, Moretti,
Mello, & Belangero, 2017; Drury et al., 2014; Price, Kao, Burgers,
Carpenter, & Tyrka, 2013) and DNA methylation (DNAm) age
(Gassen, Chrousos, Binder, & Zannas, 2017; Wolf et al., 2018). A
separate literature has examined markers of neural maturation such
as amygdala-PFC connectivity (Callaghan & Tottenham, 2016;
Gee, Gabard-Durnam, et al., 2013) and cortical thickness
(McLaughlin, Sheridan, Winter, et al., 2014).

Evidence for accelerated biological aging following ELA has
been found across all of these metrics. For example, numerous
studies have found that ELA is associated with earlier pubertal
timing (Graber et al., 1995; Hartman, Li, Nettle, & Belsky, 2017;
Mendle et al., 2011; Negriff, Blankson, et al., 2015). Similarly, a
small but increasing number of studies have reported accelerated
cellular aging following ELA, including shorter telomere length
(Drury et al., 2014, 2012; Mitchell et al., 2014; Shalev et al.,
2013), and advanced DNAm age relative to chronological age
(Jovanovic et al., 2017; Sumner et al., 2019). Finally, much of the
evidence for accelerated neural development following ELA
comes from studies examining amygdala-PFC functional connec-
tivity (Colich et al., 2017; Gee, Gabard-Durnam, et al., 2013;
Keding & Herringa, 2016) and cortical thinning across develop-
ment (McLaughlin, Sheridan, Winter, et al., 2014). However, other
studies have found no associations between ELA and pubertal
timing (Negriff, Saxbe, & Trickett, 2015; Negriff & Trickett,
2012) or cortical thinning (McLaughlin, Sheridan, et al., 2016;
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Rosen, Sheridan, Sambrook, Meltzoff, & McLaughlin, 2018).
Some studies have even found that ELA is associated with slower
or delayed pubertal timing (Johnson et al., 2018; Negriff, Blank-
son, et al., 2015; Sumner et al., 2019) and a more immature pattern
of amygdala-PFC connectivity (Cisler, James, et al., 2013; Maru-
sak, Martin, Etkin, & Thomason, 2015; Silvers et al., 2016). The
strength and direction of the association between ELA and markers
of biological aging varies widely across studies, and to date no
systematic review or meta-analysis on this topic has been con-
ducted.

We argue, and test through meta-analysis and systematic re-
view, that the wide variability in the association of ELA with
accelerated development might be explained—at least in part—hby
differences in how distinct types of ELA influence the pace of
development. Existing studies have focused on a wide range of
adversity experiences, ranging from physical abuse and violence
exposure to physical and emotional neglect and institutional rear-
ing, and provide some clues about the types of ELA that might be
particularly likely to produce a pattern of accelerated development.
For example, physical and sexual abuse have been consistently
associated with accelerated pubertal development in females
(Mendle, Ryan, & McKone, 2016; Natsuaki, Leve, & Mendle,
2011; Noll et al., 2017; Trickett, Noll, & Putnam, 2011; Trickett &
Putnam, 1993). In contrast, studies of war and famine suggest that
severe material deprivation can delay pubertal development (Pre-
beg & Bralic, 2000; van Noord & Kaaks, 1991). Although less
work has examined the effects of neglect and psychosocial depri-
vation on biological aging, existing studies typically find no asso-
ciation of neglect or early institutional rearing with pubertal timing
(Johnson et al., 2018; Mendle et al., 2011; Reid et al., 2017; Ryan,
Mendle, & Markowitz, 2015). In contrast, early institutionalization
is associated with an accelerated pattern of cellular aging (Drury et
al., 2012) and maturation of the amygdala-PFC circuit (Gee,
Gabard-Durnam, et al., 2013), suggesting that accelerated biolog-
ical aging might not occur in a uniform manner across various
neurobiological systems. It is important to note that sample size
varies widely across these lines of research. For instance, studies
of pubertal timing tend to be significantly larger in sample size
than studies of fMRI connectivity or cortical thickness, which
could influence the variability of the results.

Discrepancies in existing findings may be due to the treatment
of ELA as a monolithic construct with equifinality across all
metrics of biological aging. To date, no attempt has been made to
consider how associations of ELA with accelerated biological
aging might vary according to the nature of the adversity experi-
enced. Systematic investigation into variability in the association
of ELA with biological aging across adversity types may help to
reconcile inconsistent findings and advance theoretical models of
how early experiences alter the pace of development at reproduc-
tive, cellular, and neural levels of analysis. This meta-analysis
aims to do so by: (a) examining how different dimensions of ELA
influence biological aging, distinguishing between experiences
characterized by threat versus deprivation; and (b) evaluating
whether the associations of these different types of adverse early
experiences with biological aging are global or specific to partic-
ular domains of aging—including pubertal timing, cellular aging,
and brain development.

Conceptual Model of Early-Life Adversity and
Accelerated Development

Many prior studies examining the effects of ELA on accelerated
biological aging have focused on a limited range of ELA experi-
ences, typically focusing on relative extreme exposures like sexual
abuse or institutional rearing. Other studies have utilized a
cumulative-risk approach, which tallies the number of distinct
forms of ELA experienced to create a risk score without regard to
the type, chronicity, or severity of the experience and use this risk
score as a predictor of outcomes, with the assumption that all
forms of ELA have equal and additive effects on developmental
outcomes (Evans, Li, & Whipple, 2013). Very few studies attempt
to address the high co-occurrence of varying forms of ELA (Green
et al., 2010; McLaughlin, Green, et al., 2012) or examine the
differential influences of particular adversity types on biological
aging, with some notable exceptions (Colich et al., 2020; Mendle
et al., 2011; Mendle, Ryan, et al., 2016; Negriff, Saxbe, et al.,
2015; Sumner et al., 2019).

The dimensional model of adversity and psychopathology
(DMAP) argues that the wide range of experiences currently
classified as ELA can be organized into core underlying dimen-
sions that have unique influences on cognitive, emotional, and
neural development (McLaughlin, Sheridan, & Lambert, 2014;
McLaughlin & Sheridan, 2016; Sheridan & McLaughlin, 2014).
This model attempts to distill complex adverse experiences into
core underlying dimensions that cut across multiple forms of ELA
that share common features. Two such dimensions are threat,
which encompasses experiences involving harm or threat of harm
to the child, and deprivation, which involves an absence of ex-
pected inputs from the environment during development, such as
cognitive and social stimulation (e.g., complex language directed
at the child) as well as emotional nurturance (e.g., emotional
neglect). In addition, the DMAP model argues that these dimen-
sions of adversity have influences on emotional, cognitive, and
neural development that are at least partially distinct. Increasing
evidence has demonstrated the unique developmental conse-
quences of threat and deprivation on developmental outcomes
(Busso, McLaughlin, & Sheridan, 2017; Dennison et al., 2019;
Everaerd et al., 2016; Lambert, King, Monahan, & McLaughlin,
2017; Rosen et al., 2018; Sheridan, Peverill, Finn, & McLaughlin,
2017). Determining whether all forms of ELA are associated with
accelerated development across multiple metrics of biological ag-
ing or whether only particular dimensions of ELA are associated
with this pattern is critical for identifying the mechanisms linking
ELA to health outcomes and to better inform early interventions.

The threat dimension of ELA is conceptually similar, though not
identical, to the life history theory dimension of environmental
harshness, and involves experiences of trauma and violence expo-
sure. We expect that experiences characterized by threat will be
associated with accelerated biological aging, potentially in order to
maximize the opportunity for reproduction prior to mortality (J.
Belsky, Schlomer, & Ellis, 2012; Ellis et al., 2009). However, it is
unclear how experiences of deprivation align with life history
theory; whereas nutritional deprivation and food insecurity are
thought to delay pubertal timing to ensure maximal bioenergetic
resources should reproduction occur (Rogol, Clark, & Roemmich,
2000), specific predictions about physical and emotional neglect
are lacking in life history models. Preliminary evidence suggests
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that accelerated development following ELA may vary across
different dimensions of adversity. For instance, we have found that
experiences characterized by threat, but not deprivation, were
associated with accelerated pubertal stage relative to chronological
age and accelerated epigenetic aging in a community-based sample
of children and adolescents (Sumner et al., 2019). In contrast,
experiences characterized by deprivation were associated with
delayed pubertal timing, after controlling for co-occurring threat
experiences. We recently replicated this work in a nationally
representative sample of adolescent females, using age of men-
arche as our metric of accelerated aging (Colich et al., 2020); here,
we observed earlier age of menarche among adolescents exposed
to trauma and violence, but no association between deprivation and
age of menarche. Determining whether accelerated biological ag-
ing is associated with exposure to ELA generally or with particular
dimensions of ELA may help to elucidate the specific psycholog-
ical and biological mechanisms underlying these associations.
Here we extend the DMAP theoretical model to encompass mul-
tiple biological aging outcomes by integrating it with life history
theory, a well-established conceptual model of how the early
environment shapes reproductive strategies. We make novel pre-
dictions based on the integration of these two conceptual models
that we then test using meta-analyses and systematic review.

Metrics of Biological Aging

Accelerated biological aging has been conceptualized in many
ways, across multiple domains of biological development. Histor-
ically, these domains have been examined in isolation, indepen-
dent of other domains of biological aging. Few studies have
empirically explored the effects of ELA on multiple domains of
accelerated development (D. W. Belsky et al., 2017; Sumner et al.,
2019) and recent work suggests that accelerated telomere erosion
and accelerated pubertal development represent similar biological
processes as a consequence of ELA (Shalev & Belsky, 2016).

Pubertal timing. The most consistently examined marker of
accelerated development in relation to ELA is pubertal timing,
typically operationalized as the age of onset of pubertal develop-
ment, or the age of achieving a reproductive milestone such as
menarche. Puberty begins as early as ages 8-14 in females and
9-15 in males with the activation of the hypothalamic-pituitary-
gonadal (HPG) axis. This ultimately initiates the start of gonad-
arche, in which the gonads mature and produce gonadal hormones
or sex steroids. This in turn, leads to breast development and
eventually menarche in girls, and in increased testicle size and the
onset of spermarche in males. Typical measures of pubertal de-
velopment use secondary sex characteristics as a metric of pubertal
stage (Carskadon & Acebo, 1993; Marshall & Tanner, 1970). For
the purposes of this meta-analysis, we have included studies that
explore how ELA is associated with three commonly used metrics
of pubertal timing—pubertal stage relative to chronological age,
age at the achievement of the onset of secondary sex characteris-
tics, and age of menarche. Although menarche occurs relatively
late in the pubertal process, participants are relatively reliable in
their reporting of this milestone, particularly in adolescence (Dorn,
Sontag-Padilla, Pabst, Tissot, & Susman, 2013).

Cellular aging. The internal predictive adaptive response
model of accelerated aging following adversity postulates that the
early environment influences an individual’s somatic state, which

in turn influences reproductive timing and other life history events
(Nettle et al., 2013; Rickard et al., 2014). One pathway linking
ELA to somatic states is cellular aging. Some argue that if the body
detects a shortened cellular life span, mechanisms may exist to
accelerate the development of the reproductive system in order to
maximize the chances of reproduction prior to mortality (Nettle et
al., 2013; Rickard et al., 2014). Cellular aging in the context of
ELA has been measured in two different ways—telomere length
and metrics of epigenetic aging using DNAm patterns.

Telomeres are nucleopeptide complexes that sit at the end of
chromosomes and protect the chromosome from degradation
(Chan & Blackburn, 2004). Telomeres shorten due to both cell
replication and exposure to oxidative stress and inflammation. In
normal aging, telomeres shorten in all cell types, which allows for
the use of telomere length as a biological marker of cellular age
(Frenck, Blackburn, & Shannon, 1998). Chronic stress has been
associated with shortened telomere length in adults (Epel et al.,
2004), and several studies have demonstrated associations between
ELA and telomere length in children (Coimbra et al., 2017; Essex
etal., 2013; Price et al., 2013). Shortened telomere length has been
implicated in the pathogenesis of both physical and mental health
problems in adulthood (Gotlib et al., 2015; Hoen et al., 2013;
Needham, Mezuk, et al., 2015; Tyrka et al., 2016), suggesting a
potential mechanism linking ELA and maladaptive health out-
comes in adolescence and adulthood.

A second recently established metric of cellular aging is an
epigenetic clock that considers genome-wide DNAm patterns
(both increased and decreased methylation of select CpG sites) to
quantify biological age independent from chronological age
(DNAmM age; Hannum et al., 2013; Horvath, 2013). This metric
correlates strongly with chronological age in both adolescents and
adults (Horvath & Raj, 2018; Suarez et al., 2018) and shows strong
positive associations with age of death (B. H. Chen et al., 2016;
Marioni, Shah, McRae, Chen, et al., 2015), suggesting it is a valid
metric of cellular aging. Deviations between DNAmM age and
chronological age have been used as a metric of accelerated
development (Davis et al., 2017; Jovanovic et al., 2017; Sumner et
al., 2019) and are associated with exposure to ELA (Jovanovic
et al., 2017; Sumner et al., 2019). Advanced DNAm age has been
associated with increased risk of cardiovascular disease, cancer,
and obesity (Horvath et al., 2014; Marioni, Shah, McRae, Ritchie,
et al., 2015; Perna et al., 2016), again potentially highlighting a
mechanism linking ELA and physical health problems.

For the purpose of this meta-analysis, we have included studies
that explore associations between ELA and cellular aging, as
measured by both telomere length and DNAm age.

Brain development. Numerous studies have investigated the
neural consequences of ELA. Here, we focus specifically on neural
markers of maturation. As such, we focus on two metrics for which
patterns of development have been well characterized: cortical
thickness and functional connectivity between the amygdala and
prefrontal cortex (PFC). We focus on cortical thickness as a
metric of structural development because the pattern of devel-
opment is well characterized, replicated across many studies,
and shows a clear linear association with age, such that cortical
thickness steadily decreases from middle childhood to early
adulthood (Ducharme et al., 2016; LeWinn, Sheridan, Keyes,
Hamilton, & McLaughlin, 2017; Vijayakumar et al., 2016;
Wierenga, Langen, Oranje, & Durston, 2014). Second, we focus
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on functional connectivity between the amygdala and PFC as a
metric of maturation because it serves as a key component in
the stress acceleration hypothesis, which posits that the
amygdala-PFC circuit supporting emotional processing and reg-
ulation matures more rapidly among children exposed to ELA
(Callaghan & Tottenham, 2016).

Cortical thickness declines steadily from childhood to early
adulthood (Ducharme et al., 2016; LeWinn et al., 2017; Wierenga
et al., 2014), as a result of developmentally appropriate pruning of
synapses and increases in myelination of connections between
neurons (Natu et al., 2019, 2018; Sowell et al., 2004). This linear
pattern of development enables assessment of whether develop-
ment is accelerated or delayed among children with ELA relative
to their peers. Cortical structure can be measured in a variety of
ways including surface area, thickness, and volume (for review,
see Vijayakumar et al., 2016). However, cortical thickness is the
only metric that has a linear developmental trajectory, declining
steadily from early childhood through early adulthood (Ducharme
et al., 2016; LeWinn et al., 2017; Walhovd, Fjell, Giedd, Dale, &
Brown, 2017; Wierenga et al., 2014). In contrast, cortical surface
area and volume exhibit nonlinear associations with age and the
inflection points of these trajectories vary across samples and
remain a source of debate (Ducharme et al., 2016; Giedd et al.,
1999; Lenroot et al., 2007; LeWinn et al., 2017; Mills et al., 2016;
Vijayakumar et al., 2016). These nonlinear patterns of develop-
ment make assessing deviations from the expected pattern more
difficult. Therefore, we focus only on studies that use cortical
thickness—including both whole cortex and specific regions—as
an outcome.

The stress acceleration hypothesis focuses on the impact of
ELA on the developmental trajectory of neural circuits supporting
emotion processing and regulation, particularly on connectivity
between the amygdala and medial PFC (mPFC; Callaghan &
Tottenham, 2016). Animal tracing studies demonstrate that feed-
forward connections between amygdala and PFC exist early in life,
but feedback connections emerge later in development (Barbas &
Garcia-Cabezas, 2016). It has been proposed that in humans,
changes in functional connectivity between the mPFC and
amygdala may reflect the maturation of these feedback connec-
tions (Gee, Humphreys, et al., 2013). In some studies, the pattern
of functional connectivity between the amygdala and the mPFC
shifts from positive to negative across development in the context
of emotional processing tasks (Gee, Humphreys, et al., 2013;
Silvers et al., 2016; Wu et al., 2016).

For the purpose of this systematic review, we have included
studies that explore how ELA impacts both cortical thickness and
amygdala-mPFC functional connectivity.

Consistency/discrepancies acr oss metrics of biological aging.
Little research has explored how disparate metrics of biological
aging relate to each other, especially in adolescence. As mentioned
above, only one study has empirically explored the effects of ELA
on multiple domains of accelerated development in adolescence
(Sumner et al., 2019), and suggests that threat-related adversity has
a similar effect on both pubertal timing and mDNA age (with these
two metrics strongly correlated [r = .52]). Further evidence for
homogeneity across metrics suggests that telomere length may be
related to cortical thickness patterns in adults (Puhlmann et al.,
2019). However, there is also evidence to suggest that metrics of
biological aging are independent of each other. For instance, in a

large sample of middle-aged adults from the longitudinal Dunedin
Study, associations among multiple metrics of biological aging
were largely absent, including telomere length and mDNA age
(r = —0.03; D. W. Belsky et al., 2018). One possibility is that
metrics of biological aging diverge in their trajectories across the
life-course, producing weaker associations among adults than chil-
dren and adolescents, although—to our knowledge—this has yet to
be examined empirically. Finally, there are many other metrics of
biological aging that we do not examine, including “brain age,”
markers of inflammation, and cardiovascular function (D. W.
Belsky, Caspi, et al., 2015; Cole, Marioni, Harris, & Deary, 2019).
Currently, it is unclear how these metrics of biological aging are
related or independent of one another.

The Current Study

We aimed to test a novel hypothesis that experiences character-
ized by threat, but not deprivation, are associated with accelerated
biological aging. This prediction is based in the DMAP framework
(McLaughlin, Sheridan, & Lambert, 2014; Sheridan & McLaugh-
lin, 2014), but also extends that conceptual framework to encom-
pass a wide range of developmental processes that serve as metrics
of biological aging and that were not considered in the original
model. Applying this theoretical approach may help to reconcile
discrepant findings in the literature by evaluating how different
dimensions of ELA influence biological aging. In addition, we
aimed to integrate disparate literatures by examining whether
different dimension of adversity have general or specific effects on
multiple domains of biological aging—including pubertal timing,
cellular aging, and brain development. We expected that threat and
deprivation would have different influences on biological aging,
with threat associated with accelerated biological aging across all
metrics and deprivation associated with delayed pubertal develop-
ment. We did not have specific hypotheses about how deprivation
would influence cellular aging or brain development, given con-
flicting findings in the literature of both acceleration and delayed
maturation following early deprivation. We also separately exam-
ined the associations of socioeconomic status (SES) with biolog-
ical aging, as SES is a commonly used global measure of early
experience that is associated with increased risk of exposure to
both threat and deprivation (e.g., Green et al., 2010; McLaughlin,
Green, et al., 2012). We had no a priori hypotheses about SES,
given that SES is linked to greater risk for both threat and depri-
vation experiences. A final guiding question was whether the
associations of ELA characterized by threat and deprivation with
biological aging would be consistent across all metrics, given
inconsistencies in the literature as to how these metrics relate to
one another (Belsky et al., 2018). Whereas pubertal development
reflects a more global measure of aging, cellular aging is a metric
of biological aging most relevant to physical health, and cortical
thickness and development in the amygdala-PFC circuit may re-
flect learning or adaptation to a stressful early environment, but not
aging in a global way. Finally, given the potential for genetic
confounding in the link between ELA and accelerated develop-
ment, we perform moderator analysis to evaluate whether effect
sizes across studies that attempt to control for such confounding
relative to those that do not.
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M ethod

Information Sources and Search Strategy

This meta-analysis and systematic review was conducted in line
with the PRISMA guidelines for meta-analyses (Moher, Liberati,
Tetzlaff, & Altman, 2009; Figure 1). To identify studies with
relevant data, literature searches were conducted using Internet
databases (PubMed, SCOPUS, PsycINFO, Web of Science and
Google Scholar) through May 2019. To ensure a thorough search,
search terms encompassed various forms of ELA (e.g., violence,
trauma, neglect, maltreatment, institutional rearing, deprivation,
SES, poverty, early adversity, early life stress) as well as our
dependent measures of interest (e.g., puberty, cell aging, methyl-
ation, menarche, telomere length, methylation, neural) and our
targeted study population (e.g., infant, child, adolescent, pediatric;
see online supplemental materials for all search terms). All in-
cluded studies were published in English and from peer-reviewed
journals. To further identify eligible studies, we reviewed refer-
ences of identified articles for additional studies using forward and
backward searching.

In order to be included in the meta-analysis, studies had to meet
the following criteria. First, studies had to examine an association
between ELA and one of our dependent measures (pubertal timing,
cellular aging, or brain development) and report sufficient statistics
to calculate an effect size. Second, exposure to ELA had to occur
during childhood or adolescence (participants 18 and younger),
rather than using retrospective reports of ELA in adults. This
choice was made given the well documented recall biases associ-
ated with retrospective reporting of childhood experiences in
adulthood (Baldwin, Reuben, Newbury, & Danese, 2019; Green et
al., 2010; Hardt & Rutter, 2004; Widom, Raphael, & DuMont,
2004; Yarrow, Campbell, & Burton, 1970). Indeed, a recent meta-
analysis comparing retrospective and prospective methods for
measuring ELA exposure demonstrates very little overlap in the
groups identified by each of these methods, suggesting that pro-
spective and retrospective assessments identify fundamentally dif-
ferent groups of people (Baldwin et al., 2019). However, reports of
age of menarche and metrics of cellular aging do not suffer this
problem to the same degree (Cooper et al., 2006; Gilger, Geary, &
Eisele, 1991). As such, we include studies where adversity was
measured prospectively, but the metric of pubertal timing was
retrospective or the measure of cellular aging was collected in
adulthood. We did not include metrics of amygdala-PFC connec-
tivity or cortical thickness measured in adulthood, given these
metrics of development are specific to patterns that occur in
childhood and adolescence, and it is not clear that more negative
amygdala-PFC connectivity or thinner cortical thickness in adult-
hood reflects accelerated biological aging.

Inclusion criteriafor ELA. We draw on a recent definition of
ELA as experiences that were either chronic or severe in nature
that require psychological or neurobiological adaptation by an
average child and that represent a deviation from the expectable
environment (McLaughlin, 2016). As detailed above, we used a
wide range of search terms for ELA encompassing maltreatment
experiences (e.g., physical, sexual, and emotional abuse; physical
and emotional neglect), exposure to traumatic events (e.g., observ-
ing domestic violence, being the victim of interpersonal violence),
institutional rearing, material deprivation (e.g., food insecurity),

and childhood SES. We did not consider biological father absence
as a form of ELA given that: (a) it is not clearly a form of ELA
based on prevailing definitions (McLaughlin, 2016); and (b) a
meta-analysis on father absence and pubertal timing was recently
conducted (Webster, Graber, Gesselman, Crosier, & Schember,
2014). We did not include other early experiences or more global
stressful life events that did not clearly meet our definition of ELA
(e.g., parental psychopathology, peer victimization).

Inclusion criteria for studies of pubertal timing. To retain
as many studies as possible, we included studies that used self-
report, parent-report, and physician-rated Tanner/PDS stage (con-
trolling for age) or age of menarche. Physician-rated Tanner stage
and interview-based assessments of age of menarche in adoles-
cence have been shown to be acceptably reliable (Coleman &
Coleman, 2002; Dorn & Biro, 2011; Dorn et al., 2013; Petersen,
Crockett, Richards, & Boxer, 1988; Shirtcliff, Dahl, & Pollak,
2009). Similarly, self-report of age of menarche, including retro-
spective reports, show relatively high reliability (Dorn et al., 2013;
Lundblad & Jacobsen, 2017). We examined whether the specific
measure of pubertal timing or including maternal age at menarche
as a covariate significantly moderated the ELA-puberty associa-
tions.

Inclusion criteria for studies of cellular aging. Although
there have been prior reviews and meta-analyses exploring the
effects of ELA on telomere length (Coimbra et al., 2017; Price et
al., 2013) or DNAm age (Gershon & High, 2015; Lewis & Olive,
2014; Silberman, Acosta, & Zorrilla Zubilete, 2016; Vinkers et al.,
2015; Wolf et al., 2018), none has focused on differences across
distinct adversity types or restricted the focus to studies measuring
ELA in childhood or adolescence. Telomere length and DNAm
age can be assessed through both blood and saliva samples, using
multiple analysis techniques. Due to the limited number of studies
on this topic, we have included all tissue types and analysis
techniques in our analyses. Tissue type and analysis technique
have been shown to influence reliability estimates of telomere
length (Aviv et al., 2011; Elbers et al., 2014; Kim, Sandler,
Carswell, Weinberg, & Taylor, 2011; Martin-Ruiz et al., 2015).
However, mMDNA age appears to be more consistent across tissue
types (Horvath & Raj, 2018). Regardless, we examined whether
metric of cellular aging (telomere length and DNAmM age) or tissue
type were moderators of the ELA-cellular aging association.

Inclusion criteria for studies of brain development. We
included only studies that assessed cortical thickness—including
both whole cortex and specific regions—as an outcome and not
other measures of cortical structure (e.g., volume and surface area)
where age-related patterns are nonlinear and thus more difficult to
interpret with regard to acceleration of development. If ELA-
exposed youth exhibit thinner cortex than nonexposed youths of
the same age, this was interpreted as accelerated maturation; if
ELA-exposed youths exhibit thicker cortex than nonexposed
youths of the same age, this was interpreted as delayed develop-
ment. Similarly, we focused only on studies exploring task-related
amygdala-mPFC functional connectivity, where a developmental
shift from positive to negative in task-related amygdala-mPFC
connectivity has been documented (Callaghan & Tottenham, 2016;
Gee, Gabard-Durnam, et al., 2013). We will evaluate studies of
ELA with this normative developmental pattern in mind; if chil-
dren who have experienced adversity demonstrate greater negative
connectivity for their age than children who have not, this would
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reflect accelerated development and if children who have experi-
enced adversity exhibit more positive or less negative connectivity
than comparison children, this would reflect delayed development.
Measures of cortical thickness have shown to be highly reliable,
particularly when processed using the same analysis pipelines
(Dickerson et al., 2008; Han et al., 2006; Iscan et al., 2015). In
contrast to clear developmental changes observed in cortical thick-
ness estimates, studies investigating developmental patterns of
connectivity at rest have been more mixed, with some studies
demonstrating an increase in connectivity with age (e.g., Gabard-
Durnam et al., 2014) and others demonstrating a decrease (Jalbr-
zikowski et al., 2017). Because a consensus has not been reached
on the normative developmental pattern of amygdala-mPFC con-
nectivity during rest, we focus only on articles that explore the
associations of ELA with amygdala-mPFC connectivity using
task-related functional connectivity. Task-related activation has
been shown to be highly reliable both within-subjects and across
test sites (Gee et al., 2015), however the exact reliability of
functional connectivity within these regions remains unknown.

We conducted a systematic review for metrics of brain devel-
opment rather than a meta-analysis for the following reasons. First,
whole-brain fMRI meta-analyses focus on the spatial nature of
associations across the brain as opposed to the strength of effect
sizes within a designated region. Given our focus on a specific
measure of functional connectivity (amygdala-mPFC), spatial
maps do not sufficiently address our research question regarding
this metric of neural development. Second, the use of heterogenous
ROIs in studies of cortical thickness and amygdala-mPFC connec-
tivity (e.g., different regions of mPFC), make it difficult to quan-
titatively compare results across studies. Third, meaningful differ-
ences in task design and task demands make it difficult to directly
compare results of amygdala-mPFC connectivity using meta-
analysis.

Because we were unable to meta-analyze the neuroimaging
studies, we implemented the following criteria to assess the quality
of each study included in the systematic review. This includes four
criteria for PFC-amygdala connectivity studies and three criteria
for cortical thickness studies. If the study took adequate steps to
address the criterion in question, it received 1 point. If adequate
steps were not taken, it received 0 points. The criteria for both sets
of studies included: (a) adequate sample size (N > 20 per group or
N = 40 overall if using continuous independent variables); (b)
appropriate cluster correction for whole-brain analyses and correc-
tion for multiple comparisons for ROI-based analyses; and (c)
appropriate methods for correcting for motion artifacts, including
checks for between-groups differences in motion. A final criterion
applied only to studies of PFC-amygdala connectivity examined
whether an appropriate control condition was used in the fMRI
contrast (i.e., task-related activation was compared with an active
control condition, not fixation).

Measuring and Coding Adversity

In order to directly compare results from the present study with
the majority of the existing literature, we first conducted an anal-
ysis in which we include studies defining ELA broadly, regardless
of adversity type. We then examined whether associations of ELA
with biological aging metrics exhibited significant heterogeneity,
and evaluated whether adversity type (i.e., threat, deprivation,

SES) was a moderator of these associations (see Moderator Anal-
ysis for details). Consistent with previous work from our group
(Colich et al., 2020; Dennison et al., 2019; McLaughlin, Sheridan,
Lambert, 2014; Sheridan & McLaughlin, 2014), we conceptual-
ized threat-related adversities to include experiences of physical
abuse, domestic violence, sexual assault, witnessing or being the
victim of violence in the community, and emotional abuse.
Deprivation-related adversities included physical neglect, low cog-
nitive stimulation, food insecurity, and early institutionalization/
international adoption. We also examined the effects of SES,
including family income and parental education. Although low
SES is associated with reductions in cognitive stimulation among
children (Bradley, Convyn, Burchinal, McAdoo, & Garcia Coll,
2001; Duncan & Magnuson, 2012; Gilkerson et al., 2017), SES is
a proxy for deprivation rather than a direct measure. This is
especially true when studies examine the effects of SES without
controlling for co-occurring experiences of threat or violence. To
ensure that we had not diluted our deprivation composite by
including SES as an indicator, we chose to examine studies using
SES as a metric of ELA separately.

The literature search yielded a total of 7,903 studies. Studies
were first excluded based on their title or abstract (k = 7363) with
exclusion decisions made by one of the authors (N.L.C.) and
confirmed by another. Exclusion criteria included any publication
that was not an analysis of primary data (i.e., a review, book
chapter, etc.). We also excluded any studies conducted outside of
the United States, Western Europe, or Australia, given well-
documented effects of ethnicity, nutritional status, and SES on
timing of development (Parent et al., 2003) and difficulties assess-
ing SES consistently across different countries. A subset of studies
were examined more thoroughly for eligibility (k = 540). After a
careful review of the methods, studies were excluded if they didn’t
include a relevant independent or dependent variable (i.e., single
gene methylation patterns rather than a measure of epigenetic
aging or resting state amygdala-PFC connectivity rather than task-
based connectivity; k = 137), if they were a review article or book
chapter (k = 140), if they were conducted outside of the U.S./
Europe/Australia (k = 82), if the study was conducted in infants
(k = 9) or nonhuman animals (k = 6), if adversity was measured
retrospectively in adults (k = 39), if we were unable to access the
article (n = 24), if the data were from a conference abstract (k =
8), published in a foreign language only (k = 3), if the study was
not sufficiently powered (i.e., less than or equal to five participants
per group; k = 2), or the study was later retracted (k = 1). Given
our focus on understanding deviations in developmental timing
following ELA, studies were also excluded if the exposed and
control group differed significantly in age (k = 1; Humphreys et
al., 2016). Finally, studies were excluded if they did not include
data that we were able to convert into an effect size after multiple
attempts to contact the study authors for original data (k = 9).
Overall, the current study included a total of 79 studies: 43 studies
contributing to our meta-analysis exploring the effects of ELA on
pubertal timing (n = 114,450), 11 studies contributing to our
meta-analysis exploring the effects of ELA on cellular aging (n =
1,560), and 25 studies contributing to our systematic review ex-
ploring the effects of ELA on brain development (n = 3,253; with
one study [Sumner et al., 2019] contributing to both pubertal
timing and cellular aging analyses).
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Management of Nonindependent Samples

In many cases, we extracted multiple effect sizes from the same
sample. For example, some studies included multiple measures of
pubertal timing (e.g., pubertal stage and age of menarche) or
multiple measures of ELA (e.g., sexual abuse and physical abuse).
Similarly, associations between ELA and developmental timing
from a single study were sometimes examined across multiple
publications using the same sample. To deal with this noninde-
pendence, we conducted multilevel mixed effects analyses with
restricted maximum likelihood estimation, including study nested
within sample as a random effect, such that multiple effect size
estimates are nested within a higher-level grouping variable (e.g.,
study or sample). In the case of longitudinal data, we always
included data from Wave 1, as this wave tends to have the lowest
attrition rate and in turn, the largest sample size (Borenstein,
Hedges, Higgins, & Rothstein, 2009). If a separate article included
data from a later wave, we included that data and did not report
data from Wave 1 a second time (as these associations were
included in the analysis from the Wave 1 article; e.g., (Mendle,
Leve, Van Ryzin, & Natsuaki, 2014; Mendle et al., 2011).

Data Extraction

Three trained raters (N.L.C., M.L.R. & E.S.W.) coded individ-
ual studies. We screened each study and coded variables for study
year, authors, participant composition/sample, mean age of partic-
ipants, number of males and female participants, ethnicity, puber-
tal timing measure and informant, ELA measure and informant,
cellular aging tissue type, and analysis technique, as well as
whether analyses controlled for other types of adversity, parent
psychopathology, child psychopathology, father absence, mother’s
age at menarche, and body mass index (BMI). All disagreements
in coding were resolved via discussion among the three raters until
consensus was achieved.

Data Analysis

To ensure consistency in the directionality of the effect sizes, in
all cases, metrics of developmental timing were coded to indicate
that numerically lower values (negative values) indicated acceler-
ated development, to be consistent with age at menarche or age at
pubertal attainment (the most commonly used metrics). Similarly,
adversities were coded so that a numerically higher value indicates
greater adversity. To be consistent with other variables, SES was
coded to indicate that numerically higher SES values indicate
lower SES.

For each study we calculated an effect size d and corresponding
sampling variance (Cohen’s d; Cohen, 1988) for each relevant
analysis (all effect size and sampling variance listed in Table S1).
A positive d indicates that exposure to ELA is associated with
delayed development (later age at a developmental milestone),
where as a negative d indicates that greater adversity is associated
with accelerated development (earlier age at a developmental
milestone). We derived ds from multiple reported statistics includ-
ing: unadjusted or adjusted correlations between two variables,
odds ratios, mean differences and standard deviations, t statistics,
F statistics and associated Ns and p values, as well as unstandard-
ized and standardized regression coefficients. All effect sizes were

computed in R (Version 3.4.1) using the escalc function in the
“metafor” package (Viechtbauer, 2010) and converted to Cohen’s
d using established formulas (Borenstein et al., 2009). Authors
were contacted when published articles met criteria for inclusion
but did not include the necessary data to calculate an effect size
amenable to our analyses, which occurred in 13 cases (of which
four provided necessary data and were included in our analyses).

All meta-analyses were conducted using three-level mixed-
effects models and the rma.mv function in the “metafor” package
(Viechtbauer, 2010) in R (Version 3.4.1) including both study and
sample as random effect (study nested within sample in order to
deal with potentially nonindependent effect sizes coming from the
same article or the same sample of participants; Assink & Wib-
belink, 2016; Konstantopoulos, 2011). Publication bias was as-
sessed using Begg’s Rank correlation test (Begg & Mazumdar,
1994) and Egger’s regression test of funnel plot asymmetry (Eg-
ger, Davey Smith, Schneider, & Minder, 1997). Additionally, we
conducted p-curve analyses using the pcurve function in the
“dmetar” package (Harrer, Cuijpers, Furukawa, & Ebert, 2019) to
examine whether selective reporting of significant findings (clus-
tering around p = .05 indicative of “p-hacking”) contributed to our
meta-analytic results (Simonsohn, Nelson, & Simmons, 2014).
P-curve analysis is based on the assumption that a “true” effect is
present only if significant p values resulting from studies included
in the meta-analysis skew to the right (i.e., include more low vs.
high statistically significant p values). All funnel plot and p-curve
figures can be found in the online supplemental materials. These
approaches may be less appropriate for mixed-effects meta-
analysis which include nonindependent data points (Assink &
Wibbelink, 2016). However, we provide the results of these tests
to be consistent with prior meta-analyses. Heterogeneity was as-
sessed using the Brestlow-day test (Cochran, 1954) and the method
proposed by Higgins and colleagues (termed I-squared; Higgins &
Thompson, 2002).

We conducted separate sets of meta-analyses to explore the
associations of ELA with two metrics of biological aging: pubertal
timing and cellular aging. Within each set of analyses, we began
by exploring the association of all adversity types (regardless of
dimension) with our two domains of biological aging, then exam-
ined whether adversity type was a moderator of these associations.
We then ran separate sensitivity analyses to examine associations
separately by threat, deprivation, and SES to assess associations of
each adversity type with biological aging outcomes. As described
above, data on neural development was not reported in a manner
across studies that permitted meta-analysis; instead, these results
were systematically reviewed.

Moderator Analyses

Given our primary objective of understanding how adversity
type influences associations between adversity and biological ag-
ing, we always first explored adversity dimension (threat, depri-
vation, SES, general adversity) as a moderator of the association
between adversity and biological aging. In addition, in cases where
effect sizes showed significant heterogeneity, we tested whether
demographic or methodological factors moderated the associations
between ELA and biological aging. These factors were based on
prior literature, and included sample race/ethnicity (% White), sex
composition of the sample (% male) and whether the study con-
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trolled for BMI (0/1) or other forms of adversity (0/1). Addition-
ally, for pubertal timing analyses, we examined metric of pubertal
timing (age of menarche OR measure of secondary sex character-
istics) and whether the association differed for studies that in-
cluded maternal age at menarche relative to those that did not. For
telomere length and DNAmM age we also examined the use of blood
versus saliva and cellular aging metric (telomere length vs. DNAm
age) as potential moderators in our analyses. If there was no
information given by the article regarding a specific moderator
then they were marked as missing and not included in the moder-
ator analysis. We tested each moderator separately using the mod-
erator flag in the rma.mv function.

Results

Pubertal Timing

The 43 studies included in this meta-analysis produced 94 effect
sizes and a total of 114,450 participants. Sample sizes ranged from
25 t0 20,345 (median = 587). Of the 94 effect sizes, 21 focused on
ELA characterized as threat, 21 focused on deprivation, 40 on
SES, and 12 used a cumulative approach of summing across
multiple forms of adversity. Table 1 presents descriptive demo-
graphic information for each study.

All adversities. We first examined the effect of all forms of
adversity on pubertal timing across all 43 studies included in the
meta-analysis. Greater exposure to ELA was associated with ear-
lier pubertal timing (d = —0.10, 95% CI [—0.18, —0.01]) and
significantly differed from zero (z = —2.14, p = .03; Figure 2).
Significant heterogeneity was observed across studies, Q(93) =
653.92, p < .0001; 1 = 95.40. The result of Begg’s publication
bias test (Kendall’s =+ = —0.10, p = .18) and Egger’s linear
regression test (z = —1.65, p = .10) were not significant, sug-
gesting no publication bias in our sample of studies (see sFigurel
for a funnel plot of all adversities and pubertal timing). The results
of the p-curve analysis, in which 36 effect sizes were included and
30 had p values lower than .025, suggest that there is a “true”
effect size driving these findings, and the results are not due to
publication bias or p-hacking (sFigure 2).

Using adversity type as a moderator, we tested our hypothesis
that threat would have a significant negative effect on pubertal
timing (suggesting accelerated development), whereas deprivation
would a significant positive effect on pubertal timing (suggesting
delayed development). The random-effects meta-analysis includ-
ing four adversity types as a moderator (threat, deprivation, SES,
and any studies using only a composite measure of adversity)
revealed that adversity type significantly moderated the associa-
tion between ELA and pubertal timing, F(3, 90) = 51.77, p <
.0001. Given significant differences across adversity type, we
explored the effect of adversity on pubertal timing separately for
each category of adversity.

Given concerns about genetic confounding of the association
between maternal age at menarche and ELA exposure, we con-
ducted a moderator analysis to test whether effect sizes derived
from studies that controlled for maternal age at menarche differed
significantly from those that did not. Of the 94 effect sizes in-
cluded in this analysis, 19 of them came from articles that consid-
ered mother’s at menarche. The random-effects meta-analysis in-
cluding two categories as a moderator (study controlled for

mother’s at menarche or did not control for mother’s age at
menarche) revealed that controlling for mother’s age at menarche
did not significantly moderate the association between ELA and
pubertal timing, F(1, 92) = 0.08, p = .78.

Threat. In studies that specifically explored the association of
threat exposure with pubertal timing (12 studies; 21 effect sizes,
N = 36,194), greater exposure to threat was associated with earlier
pubertal timing (d = —0.26, 95% CI [—0.40, —0.13]). The effect
size was small and significantly differed from zero (z = —3.81,
p < .001; Figure 3). Significant heterogeneity was observed across
studies, Q(20) = 229.73, p < .001; 12> = 94.37. The results of
Begg’s publication bias test (Kendall’s T = —0.27, p = .10) and
Egger’s linear regression test (z = —1.45, p = .15) were not
significant, suggesting no publication bias in our sample of studies
(see sFigure3 for a funnel plot of all threat-related adversities and
pubertal timing). The results of the p-curve analysis, in which 21
effect sizes were included and 12 had p values lower than .025,
suggest that there is a “true” effect driving these findings, and the
results are not due to publication bias or p-hacking (sFigure 4).

Given significant heterogeneity in our studies examining the
association of threat-related adversities with pubertal timing, we
conducted a series of moderator analyses. None of the five mod-
erators (metric of pubertal timing, sex, race/ethnicity, BMI, con-
trols for other ELA types) were significantly associated with
variations in effect size.

Deprivation. In studies that specifically focused on the asso-
ciation of deprivation exposure with pubertal timing (12 studies;
21 effect sizes, N = 34,193), deprivation was not associated with
pubertal timing (d = 0.05, 95% CI [—0.07, 0.17]) and did not
significantly differ from zero (z = 0.81, p = .42; Figure 3).
Significant heterogeneity was observed across studies, Q(20) =
51.17, p < .001; 12 = 89.34. The results of Begg’s publication bias
test (Kendall’s = 0.23, p = .14) and Egger’s linear regression
test (z = 1.86, p = .06) were not significant, suggesting no
publication bias in our sample of studies. (see sFigure3 for a funnel
plot of all deprivation-related adversities and pubertal timing). The
results of the p-curve analysis, in which 21 effect sizes were
included and four had p values lower than .025, suggest that the
results are not due to publication bias or p-hacking (sFigure4).

Given significant heterogeneity in our studies examining the
association of deprivation-related adversities with pubertal timing,
we conducted moderator analyses. For the association between
deprivation and pubertal timing, sex was significantly associated
with variation in effect sizes (estimate = 0.01, SE = 0.00, z =
3.50, p < .001), suggesting that the more males included in the
sample, the more positive the association between deprivation
exposure and pubertal timing (i.e., the more delayed the pattern of
maturation). Given that multiple forms of deprivation were in-
cluded in this category, including emotional deprivation (e.g.,
emotional neglect) and markers of deprivation across emotional,
cognitive, and social domains (e.g., institutional rearing), we also
conducted a sensitivity analysis exploring whether the effect size
varied across different indicators of deprivation. The random-
effects meta-analysis, including two categories as a moderator
(neglect, institutionalization), revealed that controlling for depri-
vation type did not significantly moderate the association between
deprivation-related ELA and pubertal timing, F(1, 19) = 0.53,p =
AT,
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Figure 2. Association of all adversities and pubertal timing. The point sizes are an inverse function of the
precision of the estimates.
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Figure 3. Association of all adversities and cellular aging. The point sizes are an inverse function of the

precision of the estimates. SES = socioeconomic status.

SES. For studies that explored the association of SES with
pubertal timing (26 studies; 40 effect sizes, N = 87,654), the
random-effects meta-analysis found that SES was associated with
earlier pubertal timing (d = —0.09, 95% CI [—0.22, 0.04]), but the
effect size was not significantly different than zero (z = —1.40,
p = .16; Figure 3). Significant heterogeneity was observed across
studies, Q(39) = 285.68, p < .001; 1> = 96.38. The result of
Begg’s publication bias test (Kendall’s + = —0.15, p = .18) and
Egger’s linear regression test (z = —1.44, p = .15) were not
significant, suggesting no publication bias in our sample of studies
(see sFigure3 for a funnel plot of all SES-related adversities and
pubertal timing). The results of the p-curve analysis, in which 40
effect sizes were included and 19 had p values lower than .025,
suggest that the results are not due to publication bias or p-hacking
(sFigure4).

Given significant heterogeneity in our studies examining the
association of SES with pubertal timing, we conducted a series of
moderator analyses. For the association between SES and pubertal
timing, race/ethnicity was significantly associated with variation in
effect sizes (estimate = —0.002, SE = 0.001, z = —3.39, p <
.001), suggesting that the higher percentage of White individuals
in the sample, the more negative the association between SES-
related adversity and pubertal timing (i.e., the more accelerated the
pattern of maturation).

Céllular Aging

A total of 11 studies (nine examining telomere length, two
examining DNA methylation age) produced 17 effect sizes across
a total of 1,560 participants. Sample sizes for included studies
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ranged from 38 to 293 (median = 100). Of the 17 effect sizes, four
focused on the effect of threat on cellular aging, two focused on
deprivation, seven on SES, and four used a cumulative approach of
summing across multiple forms of adversity. Table 2 presents
descriptive demographic information for each study.

All adversities. We first examined the effect of all forms of
adversity on cellular aging across all 11 studies included in the
meta-analysis. The random-effects meta-analysis found that
greater exposure to ELA was associated with accelerated cellular
aging (d = —0.21, 95% CI [—-0.39, —0.04]) and significantly
differed from zero (z = —2.43, p = .01; Figure 4). There was
significant heterogeneity observed across studies, Q(16) = 44.27,
p < .001; I> = 61.47. The result of Begg’s publication bias test
(Kendall’s T = —0.34, p = .06) was not significant, but Egger’s
linear regression test (z = —2.06, p < .05) was significant,
suggesting a slight asymmetry of the funnel plot and potential
publication bias in our sample of studies (sFigure5). The results of
the p-curve analysis, in which seven effect sizes were included and
four had p values lower than .025, were inconclusive. The results
of this analysis do not indicate a “true effect,” free of publication
bias, but also do not verify that evidential value or a “true effect”
is absent or inadequate (sFigure6). These results are most likely
due to the small number of effect sizes included in the p-curve
analysis, and the high heterogeneity across all effect sizes. These
results should be viewed as preliminary, until more studies on this
subject are published.

Using adversity type as a moderator, we tested our hypothesis
that threat would have a significant negative effect on cellular
aging (suggesting accelerated development) and evaluated whether
these effects were similar for other adversity types. Adversity type
moderated the association between ELA and cellular aging, F(3,
13) = 7.69, p = .05. As such, we explored the associations of ELA
with cellular aging separately for each adversity type.

Given that multiple forms of cellular aging were included in this
analysis, including telomere length and DNAm age, we also con-
ducted a sensitivity analysis exploring the impact of adversity on
telomere length alone, and a using cellular aging metric (telomere
length and mMDNA age) as a moderator of the association between
ELA and cellular aging. In telomere studies only, greater exposure
to ELA was associated with shorter telomere length (d = —0.21,
95% CI [-0.41, —0.01]) and significantly differed from zero
(z = —2.03, p = .04). Significant heterogeneity was observed
across studies, Q(12) = 33.16, p < .001; I = 61.99. The result of
Begg’s publication bias test (Kendall’s r = —0.35, p = .09) was
not significant; however, Egger’s linear regression test was mar-
ginally significant (z = 01.98, p = .05), suggesting potential
publication bias in our sample of studies. The results of the p-curve
analysis, in which five effect sizes were included and two had p
values lower than .025, were inconclusive. The results of this
analysis do not indicate a “true effect,” free of publication bias, but
also do not verify that evidential value or a “true effect” is absent
or inadequate. These results are most likely due to the small
number of effect sizes included in the p-curve analysis, and the
high heterogeneity across all effect sizes. Cell type (buccal, saliva,
blood) did not significantly moderate this association, F(2, 10) =
4.20, p = .12. Similarly, cellular aging metric (telomere length and
MDNA age) did not moderate the association between ELA and
cellular aging, F(1, 15) = 0.04, p = .85.

Threat. In studies that explored the association of threat ex-
posure with cellular aging (four studies; four effect sizes, N =
664), greater exposure to threat was associated with accelerated
cellular aging (d = —0.43, 95% CI [—0.61, —0.25]). The effect
size was moderate in magnitude and differed from zero
(z = —4.65, p < .0001; Figure 5). Significant heterogeneity was
not observed across studies, Q(3) = 0.39, p = .94; I? =
0.00000001. The results of Begg’s publication bias test (Kendall’s
7= —0.33, p=.75) and Egger’s linear regression test (z = —0.43,
p = .67) were not significant, suggesting no publication bias in our
sample of studies (see sFigure 7 for a funnel plot of threat-related
adversities and cellular aging). The results of the p-curve analysis,
in which three effect sizes were included and three had p values
lower than .025, were inconclusive (sFigure 8). The results of this
analysis do not indicate a “true effect,” free of publication bias, but
also do not verify that evidential value or a “true effect” is absent
or inadequate. As with the other analyses examining cellular aging,
this is most likely due to the small number of effect sizes included
in the p-curve analysis, and the high heterogeneity across the effect
sizes.

Deprivation. In studies that explored the association of depri-
vation exposure with cellular aging (two studies; two effect sizes,
N = 347), the random-effects meta-analysis found that deprivation
was not associated with cellular aging (d = —0.01, 95% CI
[—0.24, 0.23]), with an effect size that did not significantly differ
from zero (z = —0.07, p = .94; Figure 5). Significant heteroge-
neity was not observed across studies, Q(1) = 0.31, p = .58; I =
0.00000002. The results of Begg’s publication bias test (Kendall’s
T = —1.000, p = 1.000) and Egger’s linear regression test
(z = —0.56, p = .56) were not significant, suggesting no publi-
cation bias in our sample of studies. However, given this analysis
only contained two effect sizes, this is not a reliable estimate of
publication bias. P-curve analyses were not conducted due to the
small number of significant p values < .05 (n = 2), which suggests
no evidence of p-hacking or publication bias given the absence of
significant published effects. We did not explore moderators given
the lack of heterogeneity in effect sizes.

SES. In studies of SES and cellular aging (six studies; seven
effect sizes, N = 1,005), SES was not associated with cellular
aging (d = —0.03, 95% CI [—0.20, 0.14]), with an effect size that
did not significantly differ from zero (z = —0.35, p = .73; Figure
5). Significant heterogeneity was not observed across studies,
Q(6) = 8.94, p = .18; I = 25.48. The result of Begg’s publication
bias test was not significant (Kendall’s T = —0.52, p = .14),
however Egger’s linear regression test (z = —2.45, p = .01) was
significant, suggesting a slight asymmetry of the funnel plot and
potential publication bias in our sample of studies. P-curve anal-
yses were not conducted due to the small number of significant p
values < .05 (n = 2). We did not explore moderators given the
lack of heterogeneity in effect sizes.

Brain Development

We systematically reviewed the associations between ELA and
two metrics of brain development: cortical thickness and task-
based amygdala-PFC functional connectivity. Across the two met-
rics there were 25 studies and a total of 3,253 unique participants
(17 cortical thickness articles, N = 2,825; 7 amygdala-PFC con-
nectivity articles, N = 428). As described above, we created
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Association of All Adversities with Cellular Aging
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Figure 4. Association of adversity and pubertal timing by adversity type. The point sizes are an inverse

function of the precision of the estimates.

quality ratings for these studies with a 3-point scale for cortical
thickness articles and a 4-point scale for amygdala-PFC connec-
tivity articles. All ratings can be found in Table 3 and Table 4.
Cortical thickness.
Threat. We found six articles that investigated the association
between experiences of threat and cortical thickness in childhood

Associations of Threat and Cellular Aging

and adolescence (N = 232; Busso, McLaughlin, Brueck, et al.,
2017; Edmiston et al., 2011; Gold et al., 2016; Kelly et al., 2013;
Lim et al., 2018; McLaughlin, Sheridan, et al., 2016). Of these six
studies, five found that children exposed to threat had accelerated
thinning of the cortex. Four of these studies found decreased
cortical thickness among children exposed to threat in the ventro-

Associations of Deprivation and Cellular Aging
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medial PFC (Busso, McLaughlin, Brueck, et al., 2017; Edmiston et
al., 2011; Gold et al., 2016; Kelly et al., 2013). Four found
additional associations that follow the same pattern of decreased
thickness among threat-exposed youths in regions including the
lateral PFC (Busso, McLaughlin, Brueck, et al., 2017; Edmiston et
al., 2011; Gold et al., 2016; Lim et al., 2018). Three found
evidence for reduced thickness in the orbitofrontal cortex (Edm-
iston et al., 2011; Gold et al., 2016; Lim et al., 2018) and three
found evidence for reduced thickness in medial and lateral tem-
poral cortex (Busso, McLaughlin, Brueck, et al., 2017; Edmiston et
al., 2011; Gold et al., 2016). In contrast, one study that spanned a
larger age range found no association between experiences of
threat and cortical thickness in regions of interest in the dorsal
anterior cingulate or ventromedial PFC (McLaughlin, Sheridan, et
al., 2016). As a whole, these studies provide support for the
hypothesis that experiences of threat are associated with acceler-
ated development, especially in the ventromedial PFC.

Deprivation. A total of four studies (N = 353) met inclusion
criteria for our review of the association between experiences of
deprivation and cortical thickness. This included two studies in-
vestigating cortical structure among previously institutionalized
children (Hodel et al., 2015; McLaughlin, Sheridan, Winter, et al.,
2014) and two investigating the association between cognitive
stimulation/deprivation in the home environment and cortical
structure (Avants et al., 2015; Rosen et al., 2018). Both studies of
institutionalized children demonstrate support for the hypothesis
that experiences of deprivation are associated with accelerated
cortical thinning. In one study institutionalization was associated
with widespread reductions in cortical thickness, including in
nodes of the frontoparietal and dorsal attention networks (superior
parietal lobule, frontal pole, superior frontal gyrus), default mode
network (inferior parietal cortex, precuneus, midcingulate), lateral
temporal cortex, parahippocampal cortex, and insula at age 8-10
years (McLaughlin, Sheridan, Winter, et al., 2014). In contrast,
Hodel et al. (2015) examined only prefrontal cortex regions of
interest and found reduced cortical thickness only in the inferior
frontal gyrus among previously institutionalized children com-
pared with controls at age 12-14 years.

The other two studies investigated cortical thickness and its
association with cognitive stimulation/deprivation in the home
environment. In a cross-sectional study spanning children and
adolescents, cognitive stimulation (i.e., lower deprivation) was
positively associated with cortical thickness in two nodes in the
left, but not right frontoparietal network (superior parietal lobule
and middle frontal gyrus; Rosen et al., 2018). These results are
consistent with the idea that deprivation (i.e., low cognitive stim-
ulation) is associated with accelerated development. In contrast, in
a longitudinal study, results revealed that cognitive stimulation at
age 4, but not at age 8, was negatively associated with cortical
thickness at age 19, such that lower deprivation was associated
with thicker cortex in the ventral temporal cortex and inferior
frontal gyrus. These results suggest that cognitive deprivation is
associated with delayed development in these regions.

SES. Eight studies met the criteria for inclusion examining
SES and cortical thickness (N = 2,303; Jednordg et al., 2012;
Lawson, Duda, Avants, Wu, & Farah, 2013; Leonard et al., 2019;
Mackey et al., 2015; McDermott et al., 2019; Noble et al., 2015;
Piccolo, Merz, He, Sowell, & Noble, 2016; Rosen et al., 2018). Of
those, five found that low SES was associated with thinner cortex

across large swaths of cortex encompassing the frontoparietal
network (lateral prefrontal cortex, superior parietal cortex), default
mode network (lateral temporal cortex, precuneus), and the visual
system (lateral occipital and ventral temporal cortex), supporting
the idea that low SES is associated with accelerated cortical
development. Piccolo, Merz, He, Sowell, and Noble (2016) found
that SES moderates the association between age squared and
cortical thickness such that low SES individuals show a sharper
decline in cortical thickness early in development, which may
reflect accelerated development compared with higher SES indi-
viduals. Additionally, Lawson and colleagues (2013) demonstrate
that low parent education is associated with reduced cortical thick-
ness in the right cingulate gyrus and right superior frontal gyrus,
and Mackey and colleagues (2015) demonstrate that low SES
individuals demonstrate thinner cortex across much of the brain
including the frontoparietal network (right middle frontal gyrus,
left superior parietal lobule, right frontal pole), default mode
network (left precuneus, bilateral lateral temporal cortex, right
frontal pole), and visual system (bilateral occipital and ventral
temporal cortex). McDermott et al. (2019) demonstrate that SES is
positively associated with mean cortical thickness, but when look-
ing at regional specificity, found that the association was only
significant in the right supramarginal gyrus. Two studies spanning
large age ranges (Noble et al., 2015; Rosen et al., 2018) found no
association between SES and cortical thickness. Importantly, No-
ble et al. (2015) and Piccolo et al. (2016) used the same sample and
while there were no main effects of SES on cortical thickness and
no Age X SES interactions (Noble et al., 2015), Piccolo et al.
(2016) demonstrate an Age Squared X SES interaction such that
children from low-income households demonstrate accelerated
thinning compared with high-income counterparts. One other
study in young children (Leonard et al., 2019) found that SES was
positively associated with cortical thickness in the occipital cortex
and posterior intraparietal sulcus, but only at a very liberal thresh-
old.

Amygdala-PFC connectivity.

Threat. Our search yielded five articles that evaluated the
association between amygdala-PFC connectivity and threat-related
experiences. Of these five studies (N = 250), three support the
hypothesis that experiences of threat are associated with acceler-
ated maturation of this network such that threat-exposed children
exhibit more negative connectivity between amygdala and PFC
during an implicit dynamic emotion face task, an explicit affect
labeling task, and viewing of negative versus neutral images, than
children of the same age (Colich et al., 2017; Keding & Herringa,
2016; Peverill, Sheridan, Busso, & McLaughlin, 2019). The two
other studies demonstrate the opposite pattern of results such that
children who have experienced threat demonstrate more positive
task-related amygdala-PFC connectivity compared to controls
while viewing emotional faces and while performing an emotional
conflict task (Cisler, Scott Steele, Smitherman, Lenow, & Kilts,
2013; Marusak et al., 2015). These mixed findings do not provide
conclusive evidence that experiences of threat are associated with
either accelerated or delayed development of the circuits.

Deprivation. Our search yielded two articles (N = 89) that
evaluated the association between experiences of deprivation and
task-related connectivity between mPFC and amygdala. Of these
two studies, one demonstrated evidence for accelerated develop-
ment of these circuits such that children who have experienced
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deprivation exhibit more negative connectivity earlier in develop-
ment than comparison children in a passive viewing task of facial
emotion (Gee, Gabard-Durnam, et al., 2013). The other study
found the opposite pattern of results such that children who had
experienced deprivation demonstrated more positive amygdala-
mPFC connectivity than comparison children in a fear condition-
ing paradigm (Silvers et al., 2016).

Discussion

Through the use of meta-analysis and systematic review, we
provide evidence for an association between ELA and accelerated
biological aging, as measured by pubertal timing, cellular aging,
and cortical thinning in childhood and adolescence. We found no
evidence for a consistent association of ELA and accelerated
development of amygdala-mPFC connectivity. First, although we
observed an overall association of ELA with pubertal timing,
moderator analysis revealed that ELA characterized by threat, but
not deprivation or SES, was associated with accelerated pubertal
development with a small effect size, suggesting specificity in the
link between ELA and pubertal timing to threat-related adversity.
Second, ELA was also associated with accelerated cellular aging
as measured by both leukocyte telomere length and DNA methyl-
ation age. Again, moderator analyses revealed accelerated aging
among children exposed to threat of moderate effect size, but no
association with deprivation or SES. However, given the limited
number of studies published on early adversity and cellular aging,
these analyses, though promising in their consistency with the
other metrics of biological aging, should be interpreted as prelim-
inary. Finally, the results of our systematic review of the effects of
ELA on brain development revealed a consistent association be-
tween ELA and accelerated cortical thinning across multiple types
of ELA, although the specific brain regions involved varied by
adversity type. Associations of threat with cortical thinning were
most consistent in ventromedial PFC, whereas associations of
deprivation with cortical thinning were most consistent in the
frontoparietal and default mode networks and the ventral visual
stream. In contrast, there was no consistent association of ELA
with amygdala-mPFC connectivity. These results support the
broad predictions of the DMAP model in demonstrating divergent
patterns of association of different dimensions of ELA with pu-
bertal timing, cellular aging, and cortical thickness and extend this
model to encompass biological aging as an additional develop-
mental domain beyond those proposed in the original theory where
the effects of different forms of adversity are at least partially
distinct.

ELA and Pubertal Timing

ELA was associated with accelerated pubertal timing overall,
but significant heterogeneity existed in this effect as a function of
adversity type. The strength of the association of ELA with pu-
bertal timing was significantly moderated by adversity type, such
that the association between ELA and accelerated pubertal timing
was specific to experiences characterized by threat, and showed no
association with deprivation or SES. These results are consistent
with predictions from life history models that exposure to envi-
ronmental harshness (i.e., threat) in childhood accelerates sexual
maturation, in order to increase chances of reproduction prior to

mortality (J. Belsky et al., 2012; Ellis et al., 2009). They are also
consistent with recent findings from our lab demonstrating that
threat-related adversities are associated with accelerated pubertal
development even after adjustment for exposure to co-occurring
deprivation (Colich et al., 2020; Sumner et al., 2019). Some have
argued that ELA impacts pubertal timing through influences on the
hypothalamic-pituitary-adrenal (HPA) axis (Negriff, Saxbe, et al.,
2015; Saxbe, Negriff, Susman, & Trickett, 2015). Given associa-
tions between threat-related adversity and altered diurnal patterns
of cortisol and cortisol reactivity in childhood (Carpenter, Shat-
tuck, Tyrka, Geracioti, & Price, 2011; Jaffee et al., 2015; King et
al., 2017; Tyrka et al., 2009), it is plausible that trauma-related
alterations of the HPA-axis may interact with the HPG-axis to
accelerate the onset of pubertal development (J. Belsky, Rulttle,
Boyce, Armstrong, & Essex, 2015; Negriff, Saxbe, et al., 2015;
Saxbe, Negriff, Susman, & Trickett, 2015).

It is also important to consider the role of gene-environment
correlations in the association between threat-related ELA and
pubertal timing (Cousminer, Widén, & Palmert, 2016; Harden,
2014; Rowe, 2002). For instance, mothers who experience earlier
onset of puberty may reproduce at an earlier age, and have children
who are both more likely to experience trauma and an earlier onset
of puberty (de Vries, Kauschansky, Shohat, & Phillip, 2004;
Towne et al., 2005). This topic has been written on extensively
(Barbaro, Boutwell, Barnes, & Shackelford, 2017; Gaydosh, Bel-
sky, Domingue, Boardman, & Harris, 2018; Mendle et al., 2006;
Tither & Ellis, 2008), however most studies exploring the associ-
ation between ELA and age at menarche do not control for poten-
tial genetic confounding, as the influence of genetics versus the
shared and nonshared environment on development can be diffi-
cult to disentangle (see Gaydosh, Belsky, Domingue, Boardman,
& Harris, 2018; Mendle et al., 2006 for research designs that have
attempted to disentangle these factors). However, many more
studies have used maternal age at menarche as a covariate in
analyses exploring associations between ELA and age at men-
arche, including nine of the 43 studies included in the pubertal
timing meta-analysis. We found no variation in effect size in the
studies that controlled for maternal age of menarche from those
that did not, which provides some support for the notion that these
effects are environmentally mediated to at least some degree.
Future research using genetically informed designs is needed to
disentangle the genetic versus environmental pathways through
which ELA influences pubertal timing in order to better under-
stand the mechanisms linking threat-related ELA and accelerated
pubertal development.

We did not find support for our hypothesis that ELA character-
ized by deprivation would show an association with delayed pu-
bertal timing. Instead, we found no association between depriva-
tion and pubertal timing. Life history theory posits that deprivation
of bioenergetics resources could result in delayed maturation and
later pubertal development (J. Belsky et al., 2012; Ellis et al.,
2009). In this analysis, we included emotional and physical neglect
(Boynton-Jarrett & Harville, 2012; Colich et al., 2020; Mendle et
al., 2014, 2011; Mendle, Ryan, et al., 2016; Ryan et al., 2015;
Sumner et al., 2019), and early institutionalization (Hayes & Tan,
2016; Johnson et al., 2018; Reid et al., 2017; Sonuga-Barke,
Schlotz, & Rutter, 2010; Teilmann et al., 2009) as forms of
deprivation. It is likely that deprivation in our modern context,
represented by the forms of psychosocial deprivation included in
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our analyses, is qualitatively different from deprivation in our
evolutionary past, and as conceptualized in life history theory.
Whereas there is strong evidence for associations of food insecu-
rity and severe deprivation associated with war and famine with
delayed pubertal timing (Prebeg & Bralic, 2000; van Noord &
Kaaks, 1991), there is less support for association of early insti-
tutionalization (where most children experience severe emotional
deprivation but not necessarily food insecurity) with pubertal
timing (Johnson et al., 2018; Reid et al., 2017). Our novel finding
that deprivation is unrelated to the pace of biological aging has
clear theoretical implications for life history theory, which to date
has made no clear predictions about how psychosocial forms of
deprivation should impact the pace of aging and relevant repro-
ductive milestones.

In this meta-analysis, we decided to isolate the effects of depri-
vation (including neglect and early life institutionalization) from
the effects of SES. Low SES, defined as poverty and low parental
education, has previously been used as an indicator of deprivation
in studies that adjust for co-occurring threat exposure (e.g., Lam-
bert et al., 2017; Sheridan et al., 2017), based on extensive evi-
dence demonstrating that children from families with low parental
education and/or income experience reductions in cognitive and
social stimulation than children from higher-SES families (Bradley
et al., 2001; Duncan & Magnuson, 2012). However, within the
DMAP model, poverty is conceptualized as a risk factor for both
threat and deprivation, rather than a direct marker of deprivation
(McLaughlin, Sheridan, Lambert, et al., 2014; Sheridan &
McLaughlin, 2014). Indeed, there is a strong association between
SES and exposure to violence (Foster, Brooks-Gunn, & Martin,
2007) in addition to deprivation. Here, the association of SES with
accelerated pubertal timing was not significant, potentially reflect-
ing the fact that SES is a risk marker for exposure to other forms
of adversity (e.g., trauma) that are associated with accelerated
pubertal development rather than having a direct association with
pubertal timing. Despite little overlap in inclusion/exclusion crite-
ria and resulting studies included in the analyses, results of a recent
meta-analysis examining associations between SES and pubertal
timing in males similarly observed no association between SES
and pubertal timing (Xu, Norton, & Rahman, 2018). Overall, these
findings highlight the importance of considering the nature of the
exposure when exploring the developmental consequences of
ELA. Future research should carefully distinguish between the
effects of threat- and deprivation-related adversities on pubertal
timing.

There was no evidence for the moderating effect of metric of
pubertal timing (age of menarche vs. secondary sex characteristics)
on associations of ELA with pubertal timing, or whether studies
controlled for BMI or exposure to other adversity types. However,
sex did moderate the association between deprivation-related ad-
versities and pubertal timing such that the more males included in
the sample, the more positive the association between deprivation
exposure and pubertal timing, suggesting more delayed pubertal
maturation. These results suggest that deprivation may have a
differential effect on males and females. Sex differences in the
impact of adversity on pubertal timing are not surprising, given
significant sexual dimorphisms in the development of biological
systems beginning in early development and continuing through-
out sexual maturation and adulthood (Cousminer et al., 2016).
Animal models of nutritional challenge (including undernutrition

and obesity) have differential effects on pubertal timing in male
and female rats (Sanchez-Garrido et al., 2013), suggesting that
sex-specific metabolic effects of deprivation may have a signifi-
cant impact on pubertal timing. Future research in humans study-
ing the impact of food insecurity specifically, should explore this
question directly. These results, along with the fact that pubertal
timing differs significantly in males and females (Dorn & Biro,
2011), suggest that future analyses exploring the impact of depri-
vation on pubertal timing should be conducted separately in males
and females.

Race/ethnicity also significantly moderated the association be-
tween SES and pubertal timing, such that the higher percentage of
white individuals in the sample, the more negative the association
between SES-related adversity and pubertal timing (i.e., the more
accelerated the pattern of development). Documented differences
in pubertal timing depending upon race/ethnicity suggest that
Mexican American and non-Hispanic Black girls develop second-
ary sex characteristics earlier and experience earlier age at men-
arche than non-Hispanic White girls (Biro et al., 2010). Similarly,
there are well-documented differences in SES across race/ethnicity
among adolescents in the U.S. (McLaughlin, Costello, et al.,
2012). These results highlight the need to carefully consider race
and ethnicity in studies examining ELA and pubertal timing and
evaluate whether these factors moderate observed associations.

ELA and Cedllular Aging

ELA was associated with accelerated cellular aging, as mea-
sured by both leukocyte telomere length and DNAm age, such that
greater exposure to adversity was associated with decreased telo-
mere length and more advanced DNAm age relative to chronolog-
ical age. These results replicate earlier meta-analyses conducted in
adult populations of adversity with DNAm age (Wolf et al., 2018)
and telomere length (Hanssen, Schutte, Malouff, & Epel, 2017).
These results are also broadly consistent with an earlier meta-
analysis exploring the effects of stress exposure (broadly defined)
on telomere length (Coimbra et al., 2017). The consistency in
findings is striking given significant differences in the approach of
these meta-analyses. Whereas Wolf et al. (2018) and Hanssen,
Schutte, Malouff, and Epel (2017) examined the association be-
tween ELA and accelerated biological aging in adults, Coimbra et
al. (2017) examined a broad range of stressors in childhood and
adolescence, including stress reactivity as indexed by cortisol
reactivity and parental psychopathology. We did not include cor-
tisol reactivity or parental psychopathology as adversities in the
current meta-analysis, yet results are largely consistent with Co-
imbra et al. (2017). However, it important to note the small number
of studies included and the potential publication bias present in this
meta-analysis. Thus, these results should be interpreted as prelim-
inary, and further meta-analyses should be conducted once more
studies on this topic are conducted.

Despite the small number of studies, we conducted a stratified
analysis and found that exposure to threat was associated with
accelerated cellular aging of moderate magnitude, whereas neither
deprivation nor SES was associated with cellular aging. These
results support our hypotheses based on the DMAP model that
threat-related adversities would be specifically associated with
accelerated cellular aging. Again, these differential associations
should be interpreted with caution, however, as the number of
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studies examining deprivation and SES with cellular aging was
small. Similarly, Egger’s linear regression test was significant and
results of the p-curve analysis suggest potential publication bias in
this sample of studies, which is unsurprising given the small
number of studies included in these analyses. Nonetheless, these
findings provide preliminary evidence that threat-related adversi-
ties are associated with accelerated cellular aging. Greater work is
needed to clarify the magnitude and direction of associations of
deprivation and childhood SES with cellular aging.

These cellular aging results are consistent with “internal predic-
tion” models of predictive adaptive response (Nettle et al., 2013;
Rickard et al., 2014), which propose that ELA negatively influ-
ences physical health through altered cellular development as a
result of reduced energy to build or repair cellular tissue. This
theory expands earlier models focused on allostatic load, or the
accumulation of environmental insults on biological systems
(Danese & McEwen, 2012; McEwen, 1998; McEwen & Stellar,
1993), and developmental origins of health and disease models
(Barker, 2007) focused on how early experience programs biolog-
ical development to adapt to later environmental conditions. These
theories all suggest that accelerated cellular aging occurs as a
result of environmental experiences in development. Accelerated
cellular aging following ELA may occur in response to alterations
in mitochondrial function, oxidative stress, and inflammation
(Shalev, 2012). Although we observed consistent effects of ELA
across two metrics of cellular aging (telomere length and DNAm
age), some work indicates that exposure to ELA may not have
consistent associations across other metrics of biological aging
(D. W. Belsky et al., 2018). Future research should explore the
effect of distinct forms of ELA on additional metrics of allostatic
load that may represent accelerated biological aging, including
cardiometabolic risk, inflammation, and respiratory health.

Similar to pubertal timing, it is important to consider the role of
gene-environment correlations when examining associations
among ELA and cellular aging. It is plausible that a higher muta-
tion load (i.e., number of genetic point mutations), associated with
many physical and mental health problems, may underlie both
exposure to adversity and accelerated cellular aging. For instance,
parents who have higher mutation loads that may put them at risk
for greater physical and mental health problems may then have
children who are both more likely to experience trauma and also
show accelerated cellular aging. Thus, the link between ELA and
cellular aging could potentially be accounted for by genetic factors
that could contribute to both adverse early environments and
accelerated cellular aging. Future research should explore this
important alternative explanation.

ELA and Brain Development

Cortical thickness. Consistent with the hypothesis that ELA
leads to accelerated development, the majority of studies investi-
gating the association between ELA and cortical thickness found
that children exposed to adversity of any kind have thinner cortex
than their nonexposed counterparts across threat, deprivation, and
SES. However, it is critical to note that the specific brain regions
that exhibited this pattern of thinning varied consistently by ad-
versity type. This specificity may reflect precocious maturation of
particular regions of the brain depending on the particular type of
adversity experienced, reflecting adaptive experience-related tun-

ing of neural systems to the environment in which they are devel-
oping. There was remarkable consistency across studies of threat-
related experiences and cortical thickness—two of which were
high-quality, one that was moderate quality, and one that was poor
quality—with the majority observing thinner cortex in the ventro-
medial PFC among children exposed to trauma (Busso, McLaugh-
lin, Brueck, et al., 2017; Gold et al., 2016; Kelly et al., 2013). The
vmPFC is implicated in multiple forms of emotion processing,
including recall of extinction learning, appraisal of episodic mem-
ories, and appraisal of simulated future events (Dixon, Thiruch-
selvam, Todd, & Christoff, 2017; Milad & Quirk, 2012; Phelps &
LeDoux, 2005). The vmPFC has strong interconnections with the
amygdala and modulates amygdala activation based on appraisals
and prior learning (Phelps & LeDoux, 2005). Accelerated thinning
of this region among children exposed to trauma could reflect
earlier or more frequent recruitment of this region to modulate
amygdala responses, which are well-established to be elevated in
response to threat cues among children exposed to violence (Hein
et al., 2017; McCrory, De Brito, & Viding, 2011; McLaughlin,
Peverill, Gold, Alves, & Sheridan, 2015), ultimately producing
more rapid specialization of this region, potentially through more
rapid synaptic pruning or increased myelination in this region.

Association between experiences of deprivation and cortical
structure were more mixed. While one high-quality study of pre-
viously institutionalized children demonstrated widespread reduc-
tions in cortical thickness across regions of the frontoparietal,
default mode, and visual networks (McLaughlin, Sheridan, Winter,
et al., 2014), another high-quality study that focused only on
prefrontal cortex regions of interest found reduced cortical thick-
ness only in the inferior frontal gyrus (Hodel et al., 2015). Studies
investigating low cognitive stimulation have also been mixed in
the two high-quality studies included here. One study found that
low cognitive stimulation was associated with thinner cortex in the
frontoparietal network across childhood and adolescence (Rosen et
al., 2018), and another found that lower cognitive stimulation was
associated with thicker cortex in the lateral prefrontal cortex and
ventral visual stream in late adolescents (Avants et al., 2015).
Differences in the age of the samples and timing of assessment of
cognitive stimulation may have contributed to these inconsistent
findings.

The studies investigating SES-related differences in cortical
thickness also had mixed results. Two studies—one high-quality
and the other low-quality—found widespread positive associations
with SES and thickness in the frontoparietal and default mode
networks and the visual system (Jednordg et al., 2012; Mackey et
al., 2015). One study of moderate-quality focused only on the PFC
also found similar reductions in thickness (Lawson et al., 2013).
Another high-quality study found overall SES related differences
in mean cortical thickness, and a regional specificity analysis
showed that higher SES was associated with greater cortical thick-
ness specifically in the supramarginal gyrus, a region in the default
mode network (McDermott et al., 2019). Broadly, these regions
are involved in a wide range of cognitive processing including
working memory, cognitive control, autobiographical memory,
theory of mind, and visual processing (M. W. Cole & Schneider,
2007; Corbetta, Kincade, & Shulman, 2002; DiCarlo, Zoccolan, &
Rust, 2012; Spreng & Grady, 2010). Given that SES-related dif-
ferences in many of these domains are well-established (Noble,
McCandliss, & Farah, 2007), these findings could represent a
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neural mechanism explaining these SES-related differences in
cognitive function. In contrast, two high-quality studies spanning a
large age range did not find SES-related differences in thickness
(Noble et al., 2015; Rosen et al., 2018). This could be because SES
associations with cortical thickness vary across childhood and
adolescence. Indeed, using the same sample as Noble et al., 2015,
Piccolo et al. (2016) found an SES by age interaction for average
cortical thickness such that lower SES was associated with a more
rapid age-related decrease in cortical thinning early in develop-
ment while higher SES was associated with a less steep linear
decline in thickness from childhood to adolescence. These findings
are consistent with the hypothesis that low SES is associated with
accelerated maturation of the cortex.

Linear decreases in cortical thickness from infancy to adulthood
are well-established (LeWinn et al., 2017; Vijayakumar et al.,
2016; Wierenga et al., 2014), although the mechanisms by which
this pattern emerges remain in question. One interpretation is that
synaptic connections that are underutilized or inefficient are
pruned, allowing the brain to adapt to the environment in which it
develops (Huttenlocher, 1979; Petanjek et al., 2011; Rakic, Bour-
geois, Eckenhoff, Zecevic, & Goldman-Rakic, 1986). If pruning is
the primary mechanism driving cortical thinning, it is possible that
ELA-related differences in cortical thickness are due to accelerated
pruning. In the case of deprivation-related experiences, this may be
due to a lack of experience with socially or cognitively stimulating
environments (McLaughlin, Sheridan, & Nelson, 2017). Alterna-
tively, greater pruning could reflect precocious specialization and
maturation of circuits utilized more frequently by children exposed
to ELA,; in the absence of behavioral data associated with specific
patterns of cortical thinning, caution is warranted in interpreting
these patterns as either adaptive or maladaptive (Ellwood-Lowe,
Sacchet, & Gotlib, 2016). Other work suggests that age-related
decreases in cortical thinning may actually be due to increases in
myelination across development (Natu et al., 2019, 2018; Sowell et
al., 2004). Increased myelination, which is most pronounced in
deeper cortical layers may increase the intensity of voxels at the
gray-white matter border, therefore making the cortex appear
thinner across age. If myelination is the primary mechanism by
which cortical thinning happens, it is possible that increased cor-
tical thickness in response to ELA may be due to faster develop-
ment of structural connectivity between regions. Of course, these
mechanisms are not mutually exclusive and future longitudinal
work measuring multiple forms of ELA utilizing both T1-weighted
imaging and diffusion tensor imaging is needed to disentangle the
precise mechanisms by which ELA leads to thinner cortex in
youths.

Estimates of heritability of cortical thickness ranges across
specific regions of the cortex but have been shown to be consis-
tently highly heritable (Blokland, De Zubicaray, McMahon, &
Wright, 2012; Schmitt et al., 2008; Van Soelen et al., 2012;
Winkler et al., 2010). However, despite high levels of heritability,
environmental factors have also been shown to contribute to cor-
tical thickness patterns across development in twin studies that
control for genetic contributions to neural outcomes (Bootsman et
al., 2015; Joshi et al., 2011; Yang et al., 2012). It is therefore clear
that both the environment and genetic factors influence adversity-
related differences in cortical structure. Only two studies reviewed
here control for any genetic influence (Noble et al., 2015; Piccolo
et al., 2016), but those studies control for genetic ancestry (a proxy

for race) and not any genetic factors known to directly influence
cortical thickness. One other study directly addresses the issue of
heritability of cortical thickness in the discussion (Avants et al.,
2015). That study demonstrated an age-dependent association be-
tween cognitive stimulation and cortical thickness such that cog-
nitive stimulation at age 4 but not 8 is associated with differences
in cortical thickness in late adolescence. However, as noted by the
authors, while it is possible that there is a genetic influence on
cortical thickness of parents that then influences the environment,
it is unclear how this would explain differential timing of the
environmental influence. It is also important to note that cortical
thickness is positively associated with 1Q in developmental sam-
ples, which may have implications for interpreting heritability of
SES and cortical thickness (Karama et al., 2009, 2011). However,
it has been argued that 1Q should not be used as a covariate in
analyses of neurocognitive development (Dennis et al., 2009), but
many previous studies have conceptualized 1Q as an outcome that
is associated with cortical structure and have investigated cortical
structure as a mechanism explaining SES-related differences in 1Q
(Hair, Hanson, Wolfe, & Pollak, 2015; Noble et al., 2015). Future
studies focused on childhood adversity will be needed to disen-
tangle the environmental and genetic contributions to cortical
thickness.

Amygdala-PFC connectivity. Existing work examining ELA
and task-related amygdala-PFC connectivity has produced mixed
findings. Across both threat and deprivation, approximately half of
the studies—three of which were high-quality and one of which
was moderate-quality—observed that ELA was associated with
more negative functional connectivity, indicating accelerated de-
velopment (Colich et al., 2017; Gee, Gabard-Durnam, et al., 2013;
Keding & Herringa, 2016; Peverill et al., 2019), while several
others—two of which were moderate-quality and one of which
was poor-quality—showed the opposite pattern of results such that
youths exposed to ELA demonstrate more positive amygdala-PFC
connectivity than nonexposed youths, indicating delayed develop-
ment (Cisler, James, et al., 2013; Marusak et al., 2015; Silvers et
al., 2016). Therefore, existing work has yet to provide clear evi-
dence for an association between ELA and accelerated develop-
ment of these systems. However, overall more studies showed
evidence for an association between adversity and greater negative
amygdala-PFC connectivity than for greater positive connectivity
and these studies were overall of higher quality. Moreover, there is
no clear evidence that specific types of adversity have differential
influences on the development of this circuit.

One possibility is that amygdala-PFC functional connectivity is
not a reliable marker of neural development (Zhang, Padmanab-
han, Gross, & Menon, 2019). Unlike cortical thickness which has
been studied widely across large representative samples (for re-
view see Vijayakumar et al.,, 2016), research documenting
amygdala-PFC connectivity as a marker of maturation is more
modest (Gee, Humphreys, et al., 2013; Kujawa et al., 2016; Silvers
et al., 2016; Wu et al., 2016), and to our knowledge, all of the
studies that have demonstrated a developmental shift in this circuit
have been cross-sectional. Recently, a large-scale cross-sectional
study of 749 children, adolescents, and adults failed to replicate
age-related developmental patterns in amygdala-PFC connectivity
during emotion face processing (Zhang et al., 2019). As such, it is
unclear whether amygdala-mPFC connectivity is a reliable marker
of neural maturation. Alternatively, while all these tasks focused
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on some sort of emotional processing, it is likely that heterogeneity
in the specific tasks contributed to differences in the pattern of
results across studies. Future longitudinal work with a range of
emotional processing tasks will be needed to establish the devel-
opmental trajectory of amygdala-mPFC connectivity to determine
whether it is a robust metric of development.

Associations Between ELA and Multiple Domains of
Biological Aging

Given the range in operationalizing accelerated development
and potential mechanisms linking ELA and accelerated biological
development, it is surprising that few have attempted to reconcile
across these different metrics of maturation. Only a handful of
studies to our knowledge have incorporated multiple metrics of
accelerated development in adolescence. J. Belsky and Shalev
(2016) put forth a “two-hit” model suggesting that ELA acceler-
ates development first through telomere erosion and second,
through earlier reproduction, which can increase oxidative stress
and accelerate telomere erosion. Although this model accounts for
two forms of accelerated aging, it does not directly compare and
contrast the effects of ELA on both metrics of accelerated devel-
opment—cellular aging and pubertal timing. Sumner, Colich, Ud-
din, Armstrong, and McLaughlin (2019) examined how exposure
to threat and deprivation-related ELA were associated with both
DNAm age and pubertal timing. They found that exposure to
threat, but not deprivation, was associated with both accelerated
epigenetic aging and accelerated pubertal timing. There is also
evidence to suggest that pubertal timing and cellular aging are
highly correlated (Binder et al., 2018; Sumner et al., 2019), sug-
gesting a potential shared mechanism contributing to the develop-
ment of both domains. However, other work demonstrates varia-
tion in the rate of change across different metrics of biological
aging in adults (D. W. Belsky, Caspi, et al., 2015), indicating that
multiple mechanisms might underlie the ELA-accelerated devel-
opment association, depending upon the metric of accelerated
development and point in the life-course when aging is measured.
Although increased allostatic load has been proposed as a mech-
anism linking ELA to accelerated pubertal timing (Danese &
McEwen, 2012; McEwen, 1998), empirical evidence testing this
possibility is currently lacking. Moreover, allostatic load is a
multidimensional construct involving numerous biological sys-
tems, and it is unclear if accelerated weathering occurs across all
systems to a similar degree (Geronimus, 1992; Geronimus,
Hicken, Keene, & Bound, 2006). If allostatic load is a mechanism
contributing to accelerated pubertal development, it could explain
our disparate findings regarding threat and deprivation as exposure
to early life trauma has been consistently associated with elevated
allostatic load (Danese & McEwen, 2012; Scheuer et al., 2018;
Widom, Horan, & Brzustowicz, 2015), whereas recent work indi-
cates that even extreme exposure to deprivation association with
institutional rearing is unrelated to allostatic load (Slopen et al.,
2019). It is clear that greater work is needed to elucidate the
mechanisms underlying accelerated development following expo-
sure to ELA across domains, whether they are global or specific to
particular dimensions of early experience, and how these mecha-
nisms ultimately contribute to changes in reproductive function,
cellular aging, and brain development. Similarly, longitudinal
studies that can explore the time course of the associations of ELA

with accelerated biological aging is necessary to further under-
stand the mechanisms linking ELA and accelerated aging across
multiple systems.

Implications of Accelerated Development

Accelerated aging across domains has been associated with a
host of mental and physical health problems. For instance, accel-
erated pubertal timing is linked with a range of mental health
problems including heightened levels of risk-taking behavior, de-
linquency, and substance abuse problems (Copeland et al., 2013;
Harden & Mendle, 2012), as well as depression and anxiety
disorders (Colich et al., 2020; Hamilton, Hamlat, Stange, Abram-
son, & Alloy, 2014; Mendle, Harden, Brooks-Gunn, & Graber,
2010; Mendle et al., 2014; Negriff & Susman, 2011; Platt, Colich,
McLaughlin, Gary, & Keyes, 2017; Ullsperger & Nikolas, 2017).
Accelerated pubertal timing is also associated with a range of
physical health problems, including cardiovascular disease, poly-
cystic ovarian syndrome in females, and testicular cancer in males
(Day, Elks, Murray, Ong, & Perry, 2015; Golub et al., 2008;
Lakshman et al., 2009; Velie, Nechuta, & Osuch, 2006). Acceler-
ated cellular aging has also been associated with depression (Rid-
out, Ridout, Price, Sen, & Tyrka, 2016), anxiety (Malouff &
Schutte, 2017), posttraumatic stress disorder (Li, Wang, Zhou,
Huang, & Li, 2017), cardiovascular disease (Rehkopf et al., 2016),
cancer (Zhu et al., 2016), and all-cause mortality (Needham, Reh-
kopf, et al., 2015). Finally, altered trajectories of cortical deve-
lopment have been linked to attention-deficit/hyperactivity disorder
(McLaughlin, Sheridan, Winter, et al., 2014) and both internalizing
and externalizing psychopathology (Busso, McLaughlin, Brueck, et
al., 2017; Gold et al., 2016). Little research has directly examined
whether accelerated development in these systems is a conse-
quence of preexisting mental and physical disorders, or a mecha-
nism explaining elevated risk for mental and physical health prob-
lems in youth who have experienced ELA (see J. Belsky et al.,
2015; Colich et al., 2020; Mendle et al., 2014; Negriff, Saxbe, et
al., 2015 for work that has explored this idea). For instance, some
evidence suggests that accelerated pubertal timing explains a sig-
nificant proportion of the association between threat-related ELA
risk for mental health problems in adolescence (Colich et al.,
2020), and that telomere shortening occurs prior to the onset of
depression in an at-risk population (Gotlib et al., 2015). However,
other evidence suggests that early psychosocial difficulties precede
early pubertal onset (Mensah et al., 2013) and could potentially
accelerate cellular aging as well (Lindqvist et al., 2015). A key
issue for future research will be to determine whether early inter-
ventions targeting psychosocial mechanisms linking ELA with
mental and physical health problems are capable of altering ob-
served patterns of accelerated biological aging.

It is also important to acknowledge that although there are
strong associations among accelerated development and negative
mental and physical health outcomes, accelerated development is
most likely an adaptation to current and presumably future envi-
ronmental conditions (J. Belsky, 2019). In a highly dangerous or
unpredictable environment, it may be adaptive in the short-term to
reach adult-like capabilities at an earlier age, in order to either
reach reproductive status earlier, or reach independence from the
caregiving situation at an earlier age. This immediate goal may
outweigh the longer-term consequences of mental and physical
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health problems. If the environment is signaling imminent mortal-
ity, then this trade-off is one that is evolutionarily adaptive. It will
be important that future work consider the adaptive significance of
accelerated development in response to ELA.

Limitations and Future Directions

Several limitations of this work highlight key directions for
future research. First, we examined a relatively small number of
studies for some domains and within each dimension of adversity,
particularly with regard to cellular aging and brain development.
More research is needed to evaluate whether all forms of adversity
influence cellular aging or whether these associations are stronger
for experiences of threat. Similarly, due to the small number of
studies published on these variables, we collapsed across measures
of cellular aging, including telomere length and DNAm age. Al-
though we ran sensitivity analyses to ensure that the effect was
similar if only exploring studies examining telomere length and
when using metric of cellular aging as a moderator, we could not
conduct the same analyses for DNAm age due to the small number
of studies published (k = 3). These markers reflect distinct bio-
logical processes with different molecular signatures, and we rec-
ognize that combining across these two metrics of cellular aging is
most likely an oversimplification of the effects of ELA on cellular
aging. These findings should be replicated when more studies have
been published on the associations of ELA with both telomere
length and DNAm age. We also collapsed across cellular aging
metrics derived from saliva, buccal swabs, and blood. Although
our moderator analysis revealed no moderation by cell type, it is
likely that gene expression, DNA methylation patterns, and rates
of telomere erosion differ across cell types. Once more studies
have been published in this area, future work should conduct a
meta-analysis for each cell type separately. Similarly, it is impor-
tant to note that we did not include studies examining the effects
of ELA on methylation patterns of single genes due to difficulties
in understanding what typical developmental patterns of specific
gene methylation would be. For a systematic review of the effects
of ELA on gene-specific methylation patterns see Lang et al.
(2019). Second, although we show associations among ELA, pu-
bertal timing, cellular aging, and cortical thinning, we do not have
the data to speak to the underlying mechanisms driving these
associations. Although we speculate that accelerated biological
development following ELA is most likely due to the effects of
ELA on HPA-HPG axes interactions and allostatic load, future
experimental work should investigate the underlying biological
mechanisms supporting these associations.

Along these lines, we cannot rule out the effects of genetic
heritability confounding our results. It is plausible that individuals
who experience accelerated maturation may reproduce earlier,
create a less stable family environment, and in turn put offspring
at risk for higher exposure to ELA. Future studies examining the
association of ELA and biological aging should consider the role
of genetics in their approach. It is also important to note that our
meta-analysis examines average effects of adversity on biological
aging. It is likely that some children are more susceptible than
others to the effects of trauma on biological aging (Ellis, Boyce,
Belsky, Bakermans-Kranenburg, & Van ljzendoorn, 2011). This
may explain some heterogeneity across effect sizes, and future
work should examine factors that confer risk or resilience to

biological aging following ELA. Additionally, given strong links
among ELA, accelerated development and psychopathology, it is
impossible to confidently conclude that psychopathology is not
driving the effects of ELA on accelerated biological development.
Future longitudinal work using at-risk samples should address the
directionality of these associations to determine with confidence
the direct effect of ELA on accelerated biological aging.

Finally, although we explored multiple metrics of biological
aging in this meta-analysis and systematic review, recent work
highlights interesting future directions for the field to explore.
Specifically, developments in neuroimaging analyses have led to
algorithms that use whole-brain structural neuroimaging data (both
gray matter and white matter) to accurately estimate deviations
between brain maturation and chronological age, known as brain
age metrics (Franke & Gaser, 2019; Franke, Ziegler, Kloppel, &
Gaser, 2010). This metric has been associated with the onset of
mental disorders and age of mortality (Cole et al., 2019; Cole et al.,
2018), and has been validated for use in children and adolescents
(Franke, Luders, May, Wilke, & Gaser, 2012), supporting its
utility as a biomarker of biological aging across development. A
recent study suggested that both trauma exposure and growing up
in a low-SES neighborhood was associated with more advanced
brain age relative to chronological age (Gur et al., 2019). Future
studies should explore how this relatively novel metric of biolog-
ical aging relates to established metrics of biological aging (in-
cluding pubertal timing and metrics of cellular aging), and how
exposure to different dimensions of ELA relates to deviations in
brain age metrics across development.

Conclusions

Through meta-analysis and systematic review, we find support
for the idea that ELA is associated with accelerated biological
aging, as measured by pubertal timing, cellular aging, and cortical
thinning in childhood and adolescence. However, these associa-
tions varied systematically as a function of adversity type. Specif-
ically ELA characterized by threat was associated with accelerated
pubertal development and accelerated cellular aging as measured
by both leukocyte telomere length and DNA methylation age, but
exposure to deprivation and low-SES were not, suggesting speci-
ficity in the association of certain forms of ELA with pubertal
timing and cellular aging. ELA was consistently associated with
accelerated cortical thinning, with threat-related ELA associated
with ventromedial PFC thinning and deprivation and SES more
consistently associated with thinning in the frontoparietal, default
mode, and visual networks. We found inconsistent associations of
ELA with amygdala-mPFC functional connectivity. These find-
ings suggest specific associations of dimensions of ELA with
multiple domains of biological aging and highlight the importance
of delineating the mechanisms through which specific types of
early environmental experiences influence different aspects of
biological aging in childhood and adolescence and determining
how these pathways ultimately contribute to health disparities.
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